1、循环小数分纯循环小数和混循环小数
2、纯循环小数的化法,如,0ab(ab循环)=(ab/99)
3、混循环小数的化法,如,0abc(bc循环)=(abc-a)/990
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数怎样把它化为分数呢看下面例题
把纯循环小数化分数:
纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是99的个数与循环节的位数相同能约分的要约分
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数怎样把混循环小数化为分数呢把混循环小数化分数
(2)先看小数部分0353
一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差分母的头几位数是9,末几位是09的个数与循环节中的位数相同,0的个数与不循环部分的位数相同
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算
有限小数化成分数直接将小数点去掉,分母对应化成十百千万等再约分
简介
将无限小数化为分数,有一套简单的公式。使其轻松表示出来。
循环节
例如:0121212……,循环节为12。
公式
第一种:这个公式必须将循环节的开头放在十分位。若不是可将原数乘10^x(x为正整数),就为:12121212……-0121212……=12
100倍 - 1倍 =99 (99和12之间一条分数线)
此公式需用两位数字,其中两位数差出一个循环节。
再举一个例子:000121212…… 公式就变为:1212121212……-12121212……=1200
100000 倍 - 1000倍 =99000 (1200与99000之间一条分数线)第一行为原数的的倍数10^x(x为正整数),第二行为与原数的乘数,10^x(x为正整数)。
第二种:
如,将3305030503050(3050为循环节)化为分数。
解:
设:这个数的小数部分为a,这个小数表示成3+a
10000a-a=3053
9999a=3053
a=3053/9999
算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是
(3×9999+3053)/9999 =33050/9999
还有混循环小数转分数
如01555
循环节有一位,分母写个9,非循环节有一位,在9后添个0 ,分子为非循环节+循环节(连接)-非循环节+15-1=14
14/90
约分后为7/45
这样想:
(1)循环小数分为:纯循环小数和混循环小数。
(2)纯循环小数的化法是:
如,0ab(ab循环)=(ab/99),最后化简。
举例如下:
03(3循环)=3/9=1/3;
07(7循环)=7/9;
081(81循环)=81/99=9/11;
1206(206循环)=1又206/999。
(3)混循环小数的化法是:
如,0abc(bc循环)=(abc-a)/990。最后化简。
举例如下:
051(1循环)=(51-5)/90=46/90=23/45;
02954(54循环)=(2954-29)/9900=13/44;
14189(189循环)=1又(4189-4)/9990=1又4185/9990=1又31/74。
混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。
箭头所指是说明:循环节有一位写一个9,不循环部分有一位写一个0。
箭头所指说明:循环节有两位写两个9,不循环部分有一位写一个0。
箭头所指说明:循环节有两位写两个9,不循环部分有两位写两个0。
这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。
推导结果与例(3)的中间脱式一致。
由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
无限循环小数06转化为分数是三分之二。
1、纯循环小数的化法,如,0ab(ab循环)=(ab/99),最后化简举例如下:
03(3循环)=3/9=1/3;
07(7循环)=7/9;
081(81循环)=81/99=9/11;
1206(206循环)=1又206/999
2、混循环小数的化法,如,0abc(bc循环)=(abc-a)/990最后化简举例如下:
051(1循环)=(51-5)/90=46/90=23/45;
02954(54循环)=(2954-29)/9900=13/44;
14189(189循环)=1又(4189-4)/9990=1又4185/9990=1又31/74
扩展资料:
两个整数相除,如果得不到整数商,会有两种情况:一种,得到有限小数;另一种,得到无限小数。
从小数点后某一位开始依次不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如21666(混循环小数),35232323(循环小数),20333333…(循环小数)等,其中依次循环不断重复出现的数字叫循环节。
循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。例如:
2966666 缩写为 或 (读作“二点九六,六循环”)
35232323…缩写为 或 (它读作“三十五点二三,二三循环”)
36568568……缩写为 或 (它读作“三十六点五六八,五六八循环”)
循环小数可以利用等比数列求和公式的方法化为分数,所以循环小数均属于有理数。
将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。
例如:01234234234…=(1234-1)/9990 055889888988898=(558898-55)/999900
参考资料:
混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。
箭头所指是说明:循环节有一位写一个9,不循环部分有一位写一个0。
箭头所指说明:循环节有两位写两个9,不循环部分有一位写一个0。
箭头所指说明:循环节有两位写两个9,不循环部分有两位写两个0。
这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。
推导结果与例(3)的中间脱式一致。
由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
欢迎分享,转载请注明来源:品搜搜测评网