一、有限小数
1、看是几位小数,就在1后面添几个0做分母
2、把原来的小数去掉小数点作分子
3、约分
二、无限纯循环小数
1、看循环节有几位,就写几个9做分母
2、循环节做分子
3、约分
三、无限混循环小数
1、看循环节有几位,就写几个9
2、看非循环部分有几位,就写几个0在9后面做分母
3、非循环部分和第一个循环节相连做分子
四、无理数
无理数本来就不能化成分数才叫无理数的,所以不能化分数。
扩展资料:
分数(来自拉丁语,“破碎”)代表整体的一部分,或更一般地,任何数量相等的部分。分数是一个整数a和一个正整数b的不等于整数的比。当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。 分子和分母也用于不常见的分数,包括复合分数,复数分数和混合数字。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
参考资料:
小数化为分数,方法 如下
用例题来说,7375就是1分之7375,将分子分母同乘1000,就是1000分之7375,
1、小数化成分数可以使用竖式除法看是几位小数,就在1后面添几个0做分母;把原来的小数去掉小数点后作分子;能约分的要约分
2、分数化为有限小数。一个最简分数能化为有限小数的充分必要条件是分母的质因数只有2和5。
3、分数化为纯循环小数。一个最简分数能化为纯循环小数的充分必要条件是分母的质因数里没有2和5,其循环节的位数等于能被该最简分数的分母整除的最小的99…9形式的数中9的个数。
4、分数化为混循环小数。一个最简分数能化为混循环小数的充分必要条件是分母既含有质因数2或5,又含有2和5以外的质因数。化成的混循环小数中,不循环的位数等于分母里的因素2或5的指数中较大的一个;循环节的位数,等于能被分母中异于2,5的因子整除的最小的99…9形式的数中,数9的个数
首先看2113小数点后面有几位数,如5261果是2位就除以4102100,是16531位除以10,三位数除以1000,以回此类推。然后分子和分母约分答到不能再约分为止。
小数化为分数的方法举例:将小数015约分成为分数,因为小数点后有两位小数,所以将小数除以100,变成15/100, 然后看这个分数是否可以约分,再将分子分母同时除以5,得到分数3/20,这个最简分数就是小数化为分数的最终结果。
小数化分数
而无限小数又分无限循环小数和无限不循环小数,无限循环小数可以化成分数,而无限不循环小数属于无理数,无法化成分数无限循环小数又分纯无限循环小数(就是说,从十分位开始就是循环节,如012341234,其中1234为循环节)和混无限循环小数(就是说,十分位还不是循环节,如012333333,3为循环节)。
-化分数
方法:分数X10 = 成数 成数/10 = 小数(成数除以10等于小数) 成数X10 = 百分数
成数,表示一个数是另一个数的百分之几十的数,相当于百分数。例:一成就是10%,三成五就是35%,八成五就是85%。
成数的原始出处是表示农业收成的增减,后来延伸到表示各行各业的发展变化情况。成数表示一个数是另一个数的十分之几,通称“几成”。
成数与折扣的区别与联系:
①“几折”和“几成”都表示十分之几或百分之几十,都表示分率,是一种特殊的分率;涉及的问题都包含了一个数的百分之几、比一个数多(少)百分之几等数量关系;
②折扣一般用于商品打折;成数不仅仅是用于商品打折,更适用于应用于表达各行各业的发展情况。商品打8折和价格8成意思是一样的。但在表示百分之几十几时,二者说法不一样,如,35%表示折扣时是“三五折”,表示成数时是“三成五”。
③折扣问题一般是以“打几折”的形式呈现;成数问题一般是以“增加几成”“减少几成”的形式呈现。
以上内容参考 -成数
小数化成分数,整数部分为分数的整数部分;小数部分去掉小数点,化成以10、100、1000……为分母的分数,如1位小数化成10分之几,两位小数化成100分之几……
最后,能约分的要约分。
欢迎分享,转载请注明来源:品搜搜测评网